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ABSTRACT

The objective of the present work was to experimentally

investigate the effect of small sinusoidal perturbations on

the breakdown of circular water jets issuing from long tubes

aiming to examine how the mean velocity profile for a fully

developed laminar , transitional and turbulent flow as well

as the frequency affects the mechanism of breakdown of the

jet flow.

Observations using a high frequency stroboscope were

recorded using a high speed photographic technique , for the

most distinctive phenomena observed, for three selected Rey-

nolds numbers corresponding to laminar , transitional and

turbulent flow . Markedly different behavior of flow break-

down and droplet formation was observed for each of these

flows as frequency waveform or phase angle was altered.
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I. INTRODUCTION

An important physical phenomenon which has many practi-

cal consequences in technology, ranging from fuel injection

sprays to ink jet printers, is the breakdown of a circular

jet of fluid issuing into a quiescent environment

This problem has been extensively studied previously

by Rayleigh and others, [Refs. 1, 2 and 3], for steady uni-

form jets issuing from an orifice , but only recently have

the effects of jet velocity profiles or other initial condi-

tions on the flow been investigated, [Refs. 4, 5 and 6].

Theoretical investigators have typically assumed jet

breakdown to be physically similar to transition from lami-

nar to turbulent flow and have examined the phenomena using

classical stability theory.

Rayleigh , [Ref. 1], studied the inviscid stability of

Poisseuille flow and concluded that the flow was stable to

infinitesimal disturbances. This work attracted the interest

of many investigators and sixty years later Tatsumi [Ref. 21

published his work related to the study of the velocity dis-

tribution in the axisymmetric laminar inlet flow through a

circular tube, under the assumption of I almost similarity I

of velocity profiles . He obtained fairly good agreement of

theoretical with experimental velocity distribution curves

11



in a rather limited region near the entrance where the ap-

proximation was valid

Batchelor and Gill, [Ref. 3], have analyzed the stabili-

ty of steady axisymmetric jets considering the typical small

disturbance as a Fourier component with sinusoidal dependen-

ce on both axes in cylindrical coordinates

Crow and Champagne, (Ref. 4] , have employed a loud-

speaker to generate a wave train on a turbulent jet and

found that the phase velocity of the waves could be descri-

bed by applying linear theory of temporally growing insta-

bility to a 'top hat' velocity profile.

Salwen , Chester and Grosch, [Ref. 5], have studied the

stability of Poisseuille flow in a pipe of circular cross

section with axisymmetric disturbances . They formulated the

problem by expanding the perturbation velocity and pressure

in a complete set of orthonormal functions which satisfied

the boundary conditions

In a recent work by Anderson and Bejan, [Ref. 6], the

authors presented a linear stability analysis of the large

scale structure of a round jet surrounded by an annular she-

ar layer . Their study was limited to the developing region

near the jet nozzle at very large Reynolds number ( Re--co).

They examined the radial dependence of the amplitude of gro-

wing disturbances in order to illustrate the extent to which

the disturbance penetrates into the jet and its surroundings

12
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and found that Lhe region influenced by a disturbance was

directly proportional to the wavelength of the disturbance.

They also pointed out that amplified disturbances exhibit a

phase lag across the shear layer , which may account for the

spade-like structures evident in flow visualizations of tur-

bulent jets.

In the present work we seek to investigate experimental-

ly the effects of small sinusoidal perturbations on the

breakdown of circular jets issuing from long tubes , which

permit some control of their mean velocity profiles , for

both fully developed laminar and turbulent flows.

13
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I . EXPERIMENTAL APPARATUS AND PROCEDURE

A. DESCRIPTION OF EXPERIMENTAL APPARATUS

The experiment was carried out in a vertical falling

jet produced at the outlet of a 70.0 inch long length of

0.1875 inch inside diameter stainless steel tube . The inlet

of the tube was fed from a phenum chamber machined into an

aluminum block , which also contained a 75 Watt loudspeaker

driver unit mounted properly to this block, used to introdu-

ce the pressure perturbations . A schematic diagram of the

experimental apparatus is illustrated in Fig. 1 . Details of

the aluminum block and adapter are shown in Fig. 2.

Pressure fluctuations as well as mean pressure within

the phenum chamber was monitored by the Statham differential

pressure transducer shown in Fig. 1 and a mercury manometer.

Mean water flow was controlled with a needle valve and mea-

sured with a 0.6 gpm rotameter as shown in Fig. 1. In order

to minimize effects of geometry at the exit end of the steel

tube, it was very carefully machined to ensure sharp edges

and an absence of burrs.

The loudspeaker driver was excited with a Wavetec audio

oscillator capable of producing sine waves , as well as

triangular, unit functions and ramp functions from 1 Hz to

10 MHz, amplified by a Hewlett Packard power amplifier.

14
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1 Wavetec H.F VCG Generator ,Model 142
2 Hewlett Packard Power Amplifier ,Model 467A
3 Tektronix Dual Beam Oscilloscope ,Type 551
4 high Frequency Stroboscope , Model 839
5 Cimeon Digital Multimeter DMM 51
6 Hewlett Packard RS Voltmeter , Model 3400A
7 IntronIcs Power Supply +15 VDC
8 Calibration Bridge
9 110 VAC Outlet

10 Rotameter 0.6 gpm
11 Statham Pressure Transducer PM13l TC
12 University Sound Driver Unit ID-75
13 Mercury Manometer
14 Aluminum Block
15 Needle Valve
16 L.E.D Strobolight

Figure 1. Schematic Diagram of Experimental Apparatus

1516 LE.D*Stroboli *
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Figure 2. Aluminum Block and Loudspeaker Mounting
Adapter Details
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Excitation voltage as well as the output of the plenum cham-

ber pressure transducer were monitored on a two channel Tek-

tronix oscilloscope.

Visual observations of the jet breakdown process was

made with the aid of a high frequency LED stroboscope, deve-

loped at the Max-Planck Institute for Fluids Research I which

produces a constant mean light output from 100 Hz to 1 MHz.

This device not only may be set for any phase angle but also

contains circuitry which produces automatic phase angle

sweep at an adjustable rate which permits periodic phenomena

to be visualized as they develop. Unfortunately the light

output was not sufficient for photographic recording.

Photographic recording of the observed phenomena was

made with the illumination from a General Radio Microflash

unit, which altough brighter than the LED stroboscope, lac-

ked the sophisticated triggering circuitry to permit control

of the phase angle . A 4x5 inch view camera fitted with a

210 mm objective was used to photograph on Kodak Tri-X film

which was force developed to achieve an effective film speed

of ISO 3200

An overall view of the experimental apparatus concern-

ing and the photographic equipment used is shown in Fig. 3.

'The author extends his gratitude to Dr. G.E.A Meier
who made the instrument available for this work.

17
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Figure 3. Photo of Overall Experiment Setup
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B. EXPERIMENTAL PROCEDURE

The first part of the experiment was devoted to calibra-

tion and determination of the steady flow behavior of the

jet without the introduction of external perturbations.

As the flow rate was increased a laminar flow column was ob-

served to develope which converged and began to breakdown

into a turbulent flow at 100 to 125 diameters downstream of

of the tube exit corresponding to Reynolds numbers of 880 to

2200 .

Increasing the Reynolds number above 2200 resulted in

a turbulent jet which was sudden and easily identified with

the naked eye . Breakdown of the turbulent jet was observed

with the high frequency stroboscope and was observed to ran-

ge from 55 diameters downstream at Reynolds number of 2288

to 25 diameters as the Reynolds number was increased to 4400

Based on these preliminary results , a subcritical Rey-

nolds number of 1760 was adopted for laminar flows and 2640

for turbulent flows and the effects of small perturbations

on the flow at these two Reynolds numbers was investigated

over the frequency range of 0 to 2000 Hz using the high

frequency stroboscope to observe the flow.

Based on these observations , photographic records were

made at selected frequencies at which significant characte-

ristic phenomena occured . Because of the difficulty in

accurately describing the pressure fluctuations actually

19
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produced in the phenum chamber, oscilloscope traces of these

pressure variations as well as the driving signal were also

recorded. These results are presented and discussed in Chap-

ter IV. A discussion of the effects of plenum pressure vari-

ation on the flow at the exit of a long tube is presented in

Chapter III . An analysis of the dynamic response of the

pressure transducer and its calibration curves may be found

in Appendices C and D.

20



II I. THEORETICAL ANALYSIS

A. BREAKDOWN OF LAMINAR PIPE FLOW

One of the most important problems in fluid mechanics,

one which has attracted the interest of investigators for

many years , is that of the transition from laminar to tur-

bulent flow.

The theoretical analysis of the stability of laminar

flow is based upon the assumption that turbulence is produ-

ced by the growth of what are initially small perturbations

or disturbances of the basic , laminar velocity profile.

The theoretical analyses have generally been limited

to infinitesimal disturbances for which the differential

equations of the disturbance can be linearized.

The basic problem of the small-disturbance theory is

to determine whether a small disturbance is amplified or

damped. If any small disturbance is amplified, it is assumed

that a transition to turbulent flow will ultimately occur.

However , the small disturbance theory cannot reveal any of

the details of the actual transition because it applies

only while the disturbance is small . The question of how

'smallt the disturbance must be in order to apply the line-

arized equations has not been adequately answered.

An axisymmetric flow is always stable to a disturbance

which has only a tangential component of velocity, [Ref. 7].

21



Therefore the theoretical analyses have generally been

limited to axisymmetrical disturbances . Such analyses have

been carried out by many investigators, (Refs. 2,3 and 7] ,

altough some doubt still remains concerning the details of

the mathematics.

Steady flow in a tube has been found to be stable to

small, axisymmetrical disturbances by a number of investiga-

tors,[Refs. 5,7 and 8], and may be considered as an accepted

conclusion.

Several investigators have attempted to derive a cri-

tical Reynolds number , for a flow subjected to external

disturbances , after which transition to turbulence occurs.

Leite, [Ref. 91, studied the behavior of small, axisymmetri-

cal disturbances in steady flow in a tube . He found that

they were always damped for Reynolds number up to 13000 , as

long as their amplitude was not too large. Darling,[Ref.10],

working with pulsating flows in tubes , found that the tran-

sition Reynolds number dropped from 2510 in steady flow to

1500 in pulsating flow. Sarpkaya,[Ref. 11], determined expe-

rimentally the critical Reynolds number for pulsating Poi-

seuille flow as a function of a frequency parameter and

velocity ratio . Gilbrech and Combs, [Ref. 12], using water

as working fluid, found a critical Reynolds number which was

higher than 2220 , under some conditions, for steady flow

22
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They also pointed out that earlier investigators had found

no upper limit to the upper critical Reynolds numbers.

These experimental results confirm the conclusion that

steady , fully developed flow in tube is stable to small di-

sturbances , and the critical Reynolds number is a function

of the frequency of external disturbances and the physical

properties of the fluid . In spite of this confirmation ,

transition to turbulent flow is invariably observed to occur

at sufficiently high Reynolds number and it is necessary to

consider this fact.

The most obvious explanation is that transition is

caused by finite disturbances which are not damped , even

though smaller disturbances are . This possibility is stron-

gly supported by the observation made by Gilbrech and Combs

[Ref. 131, that the critical Reynolds number decreases as

the magnitude of the disturbance increases.

The theoretical analysis of finite disturbances has

been limited by mathematical difficulties , however , Stuart

[Ref. 14], has shown that a flow may be unstable to finite

disturbances , while it is stable to infinitesimal ones. In

addition, Spielberg , [Ref. 15], has pointed out that stabi-

lity to two dimensional disturbances does not necessarily

imply stability to three dimensional disturbances. This lat-

ter result creates a problem in comparing accurately the

theoretical and experimental results

23
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In the present work, it was assumed that an axisymetri-

cal disturbance was propagated without confirming the

non-existance of three dimensional disturbances

Another explanation of the origin of turbulence in pipe

flow may be that the transition occurs in the entrance

region of the pipe, in which the velocity distribution is of

the boundary-layer type . A theoretical analysis by Tatsumi,

[Ref. 2], indicates that the flow in the entrance region is

unstable to small disturbances. He found a point of maximum

instability near the entrance to the tube, where the maximum

Reynolds number for stability was 19400 . However , the cri-

tical Reynolds number increases rapidly in both directions,

so that one cannot conclude that this local instability will

lead to transition. This is because amplification required

to produce transition remains undetermined.

Sparrow and Lin, [Ref. 16], pointed out, in their effort

to determine the detailed nature of the flow development in

the entrance region, that even for a laminar flow,the velo-

city problem for the entrance region does not yield an exact

solution, regardless of the shape of the duct cross section.

Their explanation for the difficulties in the analysis was

that the essential nonlinearity of the inertia terms which

appear in the equation of motion, preclude linear analysis.

From a more sophisticated point of view , the problem

becomes especially complicated if we attempt to reveal the

24
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nature of motion in the non-linear range of boundary layer

instability and the onset of turbulence.

Klebanoff and others , [Ref. 17] , who attacked the pro-

blem in the general form , pointed out that despite the suc-

cess of the linearized theories in revealing the nature of

the initial stages of boundary-layer instability , there re-

mains a deep void in the undestanding of the subsequent non-

linear behavior and the actual breakdown of the laminar

boundary-layer.

Miller and Fejer, [Ref. 18] , who studied the transition

in Blasius-type boundary-layer produced by a free stream ha-

ving an oscillatory component of velocity , found that the

transition Reynolds number depends only on the amplitude of

of the oscillations , and that the dimensionless transition

length is a function only of the frequency.

Obremski and Fejer , [Ref. 191 , continued the previous

work and pointed out that below a critical value of the pa-

rameter [ (Re)NS= LAU/2iyv ] , transition occurs at a relati-

vely constant Reynolds number , which appeared independent

of the amplitude and frequency of the oscillation , at least

over the range investigated.

Finally Landahl , [Ref. 25], used kinematic wave theory

to determine under what conditions breakdown of a steady or

unsteady laminar flow into high frequency oscillations

25
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should occur . Isolating the three different ingredienti of

the mechanism of breakdown , he pointed out:

a. The primary instability process itself is only
incidental to breakdown and transition , since one can
easily produce a breakdown condition by a sufficient-
ly intense local disturbance of the shear flow , for
example through free stream disturbances.

b. If the breakdown is to be self maintained as it
travels downstream however*, hydrodynamic instability
is required. In a sense , the breakdown mechanism is
the one most essential in transition of a boundary-
layer to turbulence rather than the classical hydro-
dynamic instability one, since the former represents
a strongly irreversible process.

c. An unstable small- amplitude wave packet of the
Tolmien-Schlichting type may amplify for a while , as
it moves downstream , but once it has passed through
some streamwise position in the boundary-layer it
will leave the shear flow practically as undisturbed
as before the passage of the packet , except for a
small deformation of the mean flow of second order
in disturbance amplitude . At breakdown on the cont-
rary there is an irreversible redistribution of the
basic shear flow vorticity due to a nonlinear recti-
fication mechanism

In view of the difficulties encountered in applying

the small disturbance theory to steady axisymmetrical flow ,

it is likely that considerable time and effort will be re-

quired to obtain an exact solution for unsteady flow pro-

blems , especially if we consider a three dimensional flow

The use of a I quasi-steady I analysis would reduce the

problem to one which could be handled more easily. Using

this technique one would analyze an instantaneous velocity

profile as though it were a steady-flow problem.

26
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By considering the stability of the velocity profiles

at various times, one might then draw some conclusions about

the stability of the unsteady flow an approach used by Shen,

[Ref. 21], as well as Greenspan and Benney, [Ref. 22].

In the present work, although Reynolds Numbers as high

as 19400 were not reached , we recognize that the flow in

the entrance region has , in all probability , affected the

downstream flow and may well have introduced turbulence sub-

sequently damped along the tube , for low Reynolds numbers

creating a laminar or laminar-like flow at the tube exit.

B. NONSTEADY FLOW IN A CIRCULAR TUBE

In order to study how the pressure disturbances, intro-

duced at the entrance of a long tube used to form the jet

affect the flow at the exit of the tube , which constitutes

the initial conditions of the flow of interest , we may exa-

mine the nonsteady flow in a long tube of circular cross

section . We adopt, as shown in Fig. 4 , cylindrical coordi-

nates whose x-axis is identified with the center line of the

pipe.

The equation of continuity is:

v _'") + * = 0
V(pV Zt (Eq. 1)

In cylindrical coordinates Eq. 1 becomes:
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-(p,,r) +. (pve) + - (PVx +- o (Eq. 2)

d~ +b 7,(v)+ax Z) t

.................... ....... ...... ...... ..

Figure 4. Cylindrical Coordinates in a Round Pipe.

Assuming incompressibility, (o = constant), and a non-

twisting flow (v0 = 0), Eq. 2 may be written as:

-- (rpvr) + (Pvx) = 0

Zx 'a r r

Neglecting external forces , (i.e gravity) , the Navier-

Stokes equations in two components can be written:

+ v LX  "v x  1 P + ] [ v X  ' 2 vX I Vx]

Z) t x~ VrS pr Px +X PIx2+ r +P

(Eq. 4)
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-. W- W. %.. . . . . . . . .7 -7-7

-- r + v r +  + + 1 rr _ _+

x rq + - + 2  + r2  p r r21

(Eq. 5)

If we assume quasi-steady flow, the equation of conti-

nuity Eq. 3 becomes:

Zv
x = 0 or: vx = v(r,t) (Eq. 6)t

This indicates that the velocity in the direction pa-

rallel to the center line is a constant at each moment.

Substituting vr = 0 into Eq. 5 we get:

Z:P
- = 0 or: P = P(xt) (Eq. 7)

Inserting these results in the equation of motion

(Eq. 4) :

1 p b V 1 Vx(Eq. 8)
D)t p I |br 2  r

where: V =

p

is the kinematic viscocity of the fluid.
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C. SOLUTION FOR A UNIFORM PULSATING FLOW

Assuming that the pressure pulses introduced by the

drive unit, (a loudspeaker driver), are propagated instantly

along the flow direction , ( just.;fied by the fact that the

mean flow velocity is very small compared with the speed of

sound in the fluid ) , with the aid of Eqs. 6, 7 and 8 we

can show that the pressure gradient , ( ZP/ x ), becomes a

function only of time , t.

Using Fourier series we can express the pressure gra-

dient as follows :

1 P 0

= o +n=1 cc s't) + nbnSinh t) (Eq. 9)P x

or, for the sake of simplicity of calculation , in a complex

form:

I" bP 2 int

t x =o + n=lwne  n ibn  (Eq. 10)

where : o , bn are constants representing the amplitudes of

elemental vibrations.

The corresponding solution for the axial velocity may

be assumed to be of the form

CPO CPC

V V cos~it) + 7 n- V sinont) (Eq. 11)
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IR

of the radial coordinate . r ,only.

Substituting Eqs. 10 and 12 into Eq. 8 and comparing

the terms of the same order ,we obtain the following Dif-

ferential Equations for the coefficients as independant

variables.

x  + Vxe -0 (Eq. 13)

dr2  r dr Y

and:

d' V 1 dvn V -in In

2+ - + -V~ n 0 (Eq. 14)
dr2  r dr V

After integration we get:

of the radialcoodt r 2 ny

us u- + Ai 0s 1 An2r) + Bt (Eq. 15)
V4

where: A ,Ba = constant

and:

£2n.L + DnJ(8r i3 /2) + E K(S'ri 1/2 ) (q 6

~n Idv -n n

n- in no- n+ (Eq. 16)
Vo ---. + Aon. +. B o  (E..

. . . . . . . . . . . . . . . . . .

where:.**.Ao ...,* o * *= ... . . . . ..ant



where: -=V(n/v)

and Jo and Ko are the Bessel functions of the first and

second kind of zero order respectively.

The solution for the x-wise component of velocity is

given by the real part of the following expression:

O*%r2

x = - + Aolnr + Bo +
v 4

+ + DnJo(gr i 1 2 ) + EnKo(SrilI)jeint (Eq. 17)

On the axis of the pipe , ( r = 0 ) , In(r) = -oo and

Ko(Vri1 / 2 ) =00 , since vx is finite , we conclude that:

A0 = En = 0 (Eq. 18)

The Boundary Condition at the wall is given by:

v= 0 at r = R (Eq. 19)

where: R is the radius of the pipe.

Inserting this boundary condition , Eq. 19 , into

Eq. 17 we get:

toR2  D ~nn j(Ri3/2)]

B° = 4= n + D n  ) (Eq. 20)
0 4v (Li n n l I

Inserting , Eqs. 18 and 20 into Eq. 17, we finally get

the velocity component v
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V X =  R 2 1  'n 1 ( S ri nt/
= '0oR(,21Ri13/- , (Eq. 21)

x 4v n1n10(R/)

The total mean mass flow , m , which is transmitted in

the x-direction is given by the integral over time and ra-

dius of the axial velocity component:

1 2 TT R TrR4 010
=dt/2 Vxrdr = - (Eq. 22)

2 if 8V*
0 0

Inserting the time mean pressure gradient:

xl PaC 
(Eq. 23)

we get:

Sz =(Eq. 24)

It is seen that the total mean mass flow , in pulsating

motion , is identical to that of a steady Poisseuille. flow

with the same pressure gradient, as the mean pressure gra-

dient in the pulsating flow.

A mean velocity , U , may be defined by:

U = - (Eq. 25)
3R

2
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Combining Eqs. 24 and 25 we get:

R2 1_ ll (Eq. 26)

We may express the x-wise velocity as the sum of a

perturbation velocity, v x , and the mean stream velocity of

the fluid,V x :

v V + Vx (Eq. 27)

Introducing the Hagen-Poiseuille relation for Vxs we

get:

- = 2I1-- 2 (Eq. 28)
U LR

Dividing Eq. 27 by the total mean velocity , U , we

get the non-dimensional expression:

x xs + - (Eq. 29)

U U U

Combining Eqs. 21 and 29 we get for the perturbation

velocity , V :

v = 8c 8(1-A)

n1 -n cos~t) + 2si

U b 8B 8(1-A)
+ -21  sinnt) - 2 sin t) (Eq. 30)

34



where:

ber(SR)ber(5r) + bei(aR)bei(Sr)
A-

ber2(6R) + bei 2(6R)

bei(5R)ber(6r) - ber(WRbei(ar) (Eq. 31)
B- ber2 (SR) + bei 2(S'R)

where: ber and bei are the Kelvin functions

With the aid of Eqs. 10 and 26 we can obtain the cor-

responding pressure gradient relation:

4R bP 64 r M :2% b n
pU- LP Ret + n2 - cos~n) + n=1 -Sil (Eq. 32)

P2 x R l X0 0

where:

Re = 2RU /

Introducing the friction factor for laminar flow

f = 64 / Re

into Eq. 32, we get

bP pU2  00 0
f +n= cs(t)+ fl si nimt)J (Eq. 33)

where: % /cio and bn/cto are dimensionless ratios of

amplitude of periodic variation of pressure gradient norma-

lized with the mean amplitude.
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D. VELOCITY DISTRIBUTION AND ASYMPTOTIC EXPRESSIONS

The velocity profiles for laminar . pulsating flow cons-

titute the initial conditions for any theoretical analysis

of stability. Although no exact theoretical analysis of sta-

bility is presnted in this work, solution for the velocity

profiles will serve to identify the dimensionless parameters

which are significant and will permit some qualitative de-

duction concerning the stability of pulsating flow.

From Eq. 16 we found that the periodic part of the velo-

city profile is characterized by the parameter 5R =n/vR.

The distribution of a(/ oc, . the dimensionless velocity

amplitude, obtained by Gilbrech and Combs , [Ref. 161 , is

plotted in Figure 5.

Uchida, [Ref.231, obtained solutions for limiting values

of the parameter oR by means of asymptotic expansions of the

Bessel function:

1. Slow Oscillation ( SR (< < )

When a highly viscous fluid oscillates slowly in a

narrow pipe , oR becomes small and we can approximate:

ber(SR) 1- and bei(SR) - 0

Using this approximation, we get from Eqs. 28 and 29

Vx . 1 1 + =rnast+ sirnit)

U Rn 01 JX
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Figure 5. Oscillation Amplitude of the Local Velocity
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or. --- = I - -- - - ---

or: vx 2(1 t

01

4V

From this we conclude that the velocity distribution

is a parabola, as in the case of steady Hagen - Poisseuille

flow, while the magnitude of velocity varies periodically in

phase with that of the pressure gradient.

2. Rapid Oscillation ( SR -w- )

When a fluid of low viscocity oscillates rapidly in

a large pipe , then parameter oR becomes large.

Assuming 6R > 10 , asymptotic expansion of Bessel

functions may be introduced:

ber(SR) - os + 0
2 T9R( 1 2  8  SORJJ (Eq. 35)

eJR/2 5R~
bei(5R) = - sin

2Tr5Rf I128 RI

To examine the motion of the fluid near the center

of the pipe , we put:

SR "-- and Sr - 0

As before we get:iv X 2 o n n s n t
x 2 r - t)- n

U n=l - 8 2-
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or: = 2 1- ] + n - c s [nt - +

CO b 8+ n -2-_sin nt -

%t (31)2 nt

(R2 2) 06n n t-T
or: V ~2 i 2 r) +j2j..Z-eos nt--~ + sinnt

(Eq. 36)

From this result we may conclude that in the case of

rapid oscillation , fluid flows at the center of pipe with

the phase lag of 900 behind the wave of pressure gradient

and its amplitude diminishes with increasing frequency.

To examine motion of the fluid near the wall of the

pipe , we put:

SR - and 6R --

Using the same procedure we get:

v r2 0 X 8 _r 6 (R-r)-. =2 172 + -- s i nnt)- _e sin nt- -(
UV R n %(R) 2 /'2 t ]

U n1 )1 r __ F2+0- b 8 (R-r) 6

+1 - -cos(nt)+ cosint--(R-r) (Eq. 37)
- 0o (6R) 2 f)J2J2

Because of the obvious complexity of the expression,

it is difficult to draw any simple conclusions other than to

note that a local maximum in velocity developes in the neigh

borhood of the wall as it is shown in Fig. 5 . We can also

get a better confirmation from Figs. 6 , 7 and 8 , obtained

from [Ref. 23], for values of 6R 1, 3 and 10 respectively.
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E. SECTIONAL MEAN VELOCITy

Since-the instantaneous mass flow and accordingly sec-

tional mean velocity , are periodic functions , we seek to

link the mean velocity with the applied pressure gradient.

Sectional mean velocity . denoted by v..n, is given by:

1R

x R2  (Eq. 38)

Introducing Eq. 34 and integrating we get:

v n -Cos(nt + [1- -jSinjt) +
U % (SR)2 9R 6R

00 Cpn8[1)2~o4

+ 2 siR *int)- 1 cos1 (Eq. 39)

where:

ber'(SR) - d(ber(R)) beiR = 'dber(R) (Eq. 40)

d(SR) d(5R)

and:

ber(R)bei'(OR) - bei(OR)ber'(SR)
C = ber 2 ( R) + bei 2 ( R)

ber(fR)ber'(SR) + bei(SR)bei'(5R) (Eq.41)
ber 2 (R) + bei 2( R)

An example of simple periodic pulsation is given by:
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iI

----- -( + . i (Eq. 42)- =x 00 + an eos(nt) = - x

where:

(average term )

1
- = aneosnt ( perturbation term )

Inserting the above relation into Eq. 39 we get:

vxm =1+- 8"-- os(nt) + 81 -L 2sini(
U %o (SR) 2 35R + SR

V On 8 I 2C 2  r2D 2- TI- cos(nt +V)
or : x._m + - I - SR + eo'n0- v

U % (SR)2 I RR

or: vM 1 + -LnAveos(nt - (Eq. 43)
U 0

where:

AV 8 r 2C, 2  12Dj
v (gR)2  -R + R1

is the coefficient of amplitude , and:

+v= tan 1-2C/I = tan - 1  R2C

2D/5;R'J 2D
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represents the coefficient of phase lag in the wave of

pressure gradient.

In Fig. 9 , obtained from [Ref. 23] , are plotted the

coefficients of amplitude and phase lag of mean velocity as

a function of the parameter oR.

too

Figure 9. Coefficients of Amplitude and Phase

Lag of Mean Velocity.

F. SURFACE FRICTION AND BALANCE OF FORCE

The instantaneous frictional force acting on the pipe

wall is given by:

(Eq. 44)
dr r=R

Dividing Eq. 44 by ( pU2 /2 ) , and combining with the

previously obtained Eqs. 32 , 39 and 40 we can get:
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- 1I + _ eos(nt) + -sin 0 +

pU 2  Re [ I 0 SR 6 I

n[ bI2C. - 2D <1 ] (Eq. 45)n-% -sinjn - -os(p (q s
OL%1 &R 9R

Considering the simple periodic pulsation described by

Eq. 42 we get:

2,r 16[+ n 2C 2D
= + -- cos(nt) + -sinfpt)

pU2  Re oo SR SR
2T€ 16[ o ]
-r U +-fDAcos(nt 1 p)or: 2? = 18 +

pU2  Re

4pWU r t
or: -= 1 +-Acos(nt - (Eq. 46)Re L
where:

~2CI 2 2D12
A -gAr = 1 _12 +  FR',.

represents the coefficient of amplitude of shearing stress

at the wall , and:

.D

represents the coefficient of phase lag of shearing stress

with respect to the wave of pressure gradient.
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In the Fig. 10 below , obtained from [Ref. 23], it i.s

shown how the coefficient of amplitude and phase lag of

shear stress varies with SR

Av Av

Figure 10. Coefficients of Amplitude and Phase Lag
of the Shearing Stress

If we compare Figs. 9 and 10 we observe no substantial

differences in amplitude or phase lags. Moreover, the phase

of the sectional mean velocity is greatly delayed with res-

pect to the pulsating wave of pressure gradient, while that

of shearing stress is less delayed from it.

Using Eq. 8 and integrating over the section of the

pipe, from r=0 to r=R , we can obtain a relationship between

the force and acceleration of amass of fluid enclosed in the

circular cylinder of unit length:

UP dv-. R2 .= 1R 2 0 A! + 22R0D
dt
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I - bIz dv /dt (E. ?
or: - I- + 4-

2 pU2I4R U2 /2R U

For the present example of a simple periodic pulsation

we find the mean frictional force , involved in the shear

stress ,is just balanced by the term of mean pressure gra-

dient and there results no steady acceleration. The various

terms appearing in Eq. 47 are shown in Fig. 11 below ,ob-

tained from [Ref. 23].

23

.13 V'a2

Figure 11. Periodic Force Component (A -Pressure Gradient,
B -Acceleration ,C - Shearing Force)
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IV. RESULTS AND CONCLUSIONS

A. PRELIMINARY RESULTS

After a preliminary survey of the phenomenon of jet

breakdown at a single laminar and single turbulent Reynolds

.number, as mentioned above, it was found that the field was

so rich in information that a third , transitional Reynolds

number of 2200 was added to the survey . Observations repor-

ted are of the most dinstinctive phenomena at each of the

three Reynolds numbers and were observed to occur most fre-

quentlyat frequencies which were multipliles of 33 and 50 hz

Results include two photographs at each data point of two

separate phases along with an oscillogram showing both the

excitation waveform and the pressure perturbation it produ-

ced, shown in Figs. 13 through 36. Table I is a summary of

the observed breakdown length as a function of the frequency

and Table II is a summary of oscilloscope and flow parame-

ters, corresponding to each figure.

As Hoyt and Taylor, [Ref. 24], pointed out, jets are un-

stable to two kinds of disturbances, axial and helical. The-

ory suggests that the axial instability ( corresponding to

the initial waves on the Jet surface ) die out after a few

nozzle diameters downstream and the helical instabilities,

amplified by aerodynamic resistance , lead to the final jet
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breakup. The initial slight helical motion is amplified un-

til the entire jet may be described as having a corksrew-

like motion . This is well confirmed by the photos obtained

in the present work of the jet formation before and after

the breakdown and is in good agreement with the observations

obtained by Crow and Champagne, [Ref. 4].

TABLE I

SUMMARY OF BREAKDOWN DISTANCE

f (Hz) #d #d #d
(Re=1760) (Re=2200) (Re=2640)

---------------------------------------------
0 118.0 125.0 30.0

33 112.6 120.6 31.5

50 110.0 112.0 34.0
66 106.3 103.7 32.2

100 102.0 98.5 29.5

133 98.6 99.2 33.7

150 95.5 100.0 35.0
166 92.7 101.7 37.8

200 88.0 102.5 41.0
233 85.2 101.2 45.2

250 83.5 99.0 49.0

266 81.5 101.5 47.6

300 91.2 88.0 45.0

333 96.1 97.5 44.1

350 101.8 110.3 43.3

366 110.0 121.0 42.0
400 112.0 125.0 42.5

--- ------------------------------------------
Re = Reynolds Number

f = Introduced Frequency

#d = Number of Diameters
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TABLE I I

SUMMARY OF EXPERIMENTAL CONDITIONS

Fig.# Re f Vp Vg t/cm

(Hz) (mV/cm) (mV/cm) (msec/cm)

13 1760 50 5 10 5
14 1760 100 5 10 5

15 1760 150 5 10 2
16 1760 200 5 10 2
17 1760 250 5 10 2
18 1760 270 5 10 2
19 1760 300 5 10 2
20 1760' 380 5 10 2
21 2200 50 5 10 5
22 2200 100 5 10 5
23 2200 150 5 10 2
24 2200 200 5 10 2
25 2200 233 5 10 2
26 2200 250 5 10 2
27 2200 266 5 10 2
28 2200 300 5 10 2
29 2200 380 10 10 1
30 2200 787 20 20 0.5
31 2640 50 5 10 5
32 2640 100 5 10 2
33 2640 200 5 10 2
34 2640 250 10 10 2
35 2640 300 10 10 1
36 2640 600 10 10 0.5

Re : Reynolds number

f : Introduced Frequency

Vp : Signal Amplitude from Pressure Transducer

Vg : Signal Amplitude from Frequency Generator
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Figure 12. Breakdown Length Versus Frequency
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1. Laminar Flow at Reynolds Number 1760

At this Reynolds number the unexcited flow started

to breakdown at approximately 118 diameters from the tube

exit. Increasing the frequency to 266 Hz produced a gradual-

ly movement of the breakdown point upstream to approximately

81.5 diameters from the exit. Above this frequency a rever-

sed trend appeared and the breakdown point started to move

downstream as the flow became laminar similar to the unexci-

ted flow , the only difference being in the droplets formed

after the breakdown. This phenomenon may be characterized as

a relaminarization of the flow and was almost complete at

380 Hz. Further increasing of the frequency up to 1000 Hz

produced no significant effect in the jet flow.

Results for Reynolds number 1760 are shown in Figs.

13 through 20 . As can be observed from the photos , break-

down point is not fixed and oscillates somewhat upstream and

downstream , creating a breakdown region . The amplitude of

this oscillation was reduced as the perturbation frequency

was increased , starting from about 14 diameters and approa-

approching 4 diameters as the frequency changed from 200 to

266 Hz . At 266 Hz an especially interesting phenomenon was

observed concerning the breakdown point and the droplet for-

mation . The breakdown of the jet occured at the minimum ob-

served distance from the tube exit at 81.5 diameters.
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Figure 13. Photos Illustrating Jet Breakdown and Oscilloscope
Trace of Pressure at Re=1TSS and f=50 Hz
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Figure 14. Photos Illustrating Jet Breakdown and oscilloscope
Trace of Pressure at Re=1T6S and f=100 Hz
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Figure 15. Photos Illustrating Jet Breakdown and Oscilloscope
Trace of Pressure at Re=176@ and f=150 Hz
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Figure 17. Photos Illustrating Jet Breakdown and Oscilloscope
Trace of Pressure at Re=17SO and f=250 Hz
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Figure 18. Photos Illustrating Jet Breakdown and oscilloscope

Trace of Pressure at Re=176S and f=266 Hzs
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The oscillation of the breakdown point was minimized to a-

bout 4 diameters and the droplets formed , as was observed

with the aid of the stroboscope , were exactly the same and

appeared stationary in space. This is shown in the jet pho-

tos of Fig. 18.

A plot of the breakdown distance as a function of

frequency is provided in Fig. 13 where we see that, in the

frequency range from zero to 266 Hz, an almost linear varia-

tion of the breakdown point with frequency occurs. The mini-

mum at 266 Hz may be characterized as a critical frequency

for this specific Reynolds number . Above this frequency one

also observes an almost linear variation of the average

breakdown point to 380 Hz. This region may be characterized

as relaminarization region. The slope of the breakdown curve

is greater than at lower frequencies although increasing the

frequency above 380 Hz results a zero slope curve , as

discussed above.

2. Transitional Flow at Reynolds Number 2200

At this Reynolds number the unexcited flow started

to breakdown at approximately 125 diameters from the tube

exit . Increasing the frequency to 100 Hz , the breakdown

point moved upstream up to about 98 diameters from the

tube exit . The oscillation of the breakdown point was

reduced 't this case, from 12 to 6 diameters.
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Increasing the frequency to 266 Hz resulted in

only slight variation of the breakdown point . The only

unusual observation in this range of frequency was the

drastic reduction of the amplitude of breakdown, point

oscillation as the frequency was increased .

An interesting pressure effect was observed at 266

Hz, as can be seen at Fig. 27 , where a maximum amplitude

of pressure signal was recorded.

An interesting change was observed when the fre-

quency reached 300 Hz . The breakdown point was displaced

suddenly about 25 diameters upstream and nearly stabilized

at 88 diameters . The droplets viewed with the aid of the

stroboscope appeared immobile and any oscillation of the

breakdown point was difficult to observe . Based on a series

of high speed photos it was concluded that the breakdown

point was oscillating with an amplitude of about 2 diameters

Also observed at this frequency tiat the waveforms obtained

from the signal generator and the pressure transducer were

almost in phase and moreover, the latter waveform appeared

nearly sinusoidal as shown in Fig. 28.

Further frequency increases resulted in a flow rela-

minarization as was observed and discussed in the previous

case. A completely laminar flow was observed at a frequency

of 380 Hz and no additional significant effects were obser-

ved up to 2000 Hz
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Figure 21. Photos Illustrating Jet Breakdown and Oscilloscope
Trace of Pressure at Re=220S and f=50 Hz
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Figure 22. Photos Illustrating Jet Breakdown and Oscilloscope
Trace of Pressure at Re=2200 and f=100 Hz
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Figure 23. Photos Illustrating Jet Breakdown and oscilloscope
Trace of Pressure at Re.2200 and f=150 Ha
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Figure 24. Photos Illustrating Jet Breakdown and Oscilloscope
Trace of Pressure at Re=2200 and f=200 Hz
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Figure 25. Photos Illustrating Jet Breakdown and Oscilloscope
Trace of Pressure at Rez2206 and fz233 Hz
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Figure 26. Photos Illustrating Jet Breakdown and Oscilloscope
Trace of Pressure at Re=2200 and f=250 Hz
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Figure 27. Photos Illustrating Jet Breakdown and Oscilloscope

Trace of Pressure at Re=2200 and f=266 Hz
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Figure 28. Photos Illustrating Jet Breakdown and oscilloscope
Trace of Pressure at R.=2200 and f=300 Hz
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Figure 29. Photos Illustrating Jet Breakdown and Oscilloscope
Trace of Pressure at R9=2200 and f=380 Hz
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Figure 30. Photos Illustrating Jet Breakdown and Oscilloscope
Trace of Pressure at Re=2206 and f=787 Hz
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Refering to Fig. 12 , we may draw some conclusions

concerning the average breakdown point. Up to 100 Hz a gra-

dually movement of the breakdown point upstream is observed

which is nevertheless more rapid than the laminar case as

can be seen from comparison of the slope of the curves

within this region . A nearly stable region then appears in

the frequency range between 100 Hz and 266 Hz where the

breakdown point is nearly fixed at 100 diameters. This re-

gion may be characterized as a stabilized region and was

not observed at any other Reynolds number. A singular point

was also observed at 300 Hz as discussed previously. This

frequency may be characterized as a critical frequency for

the specific Reynolds number . Finally , we can see from

Fig. 12 that the relaminarization rate was also greater for

transitional flow, producing a steeper slope of the curve in

the frequency range from 300 Hz to 400 Hz.

3. Turbulent Flow at Reynolds Number 2640

At this Reynolds number it was observed that the

unexcited flow began to breakdown at an average distance of

30 diameters and no significant effect on the jet was obser-

rved up to a frequency of 100 Hz. Increasing the frequency a

gradual movement of the average breakdown point downstream

observed, which reached a maximum of 50 diameters at 250 Hz.
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Further increase of the frequency produced a very

slow movement of the average breakdown point upstream to

about 42 diameters at a frequency of 366 Hz. The breakdown

point then remained almost unchanged up to 2000 Hz . The

only further change observed in the high frequency range

from 366 Hz to 2000 Hz, was the appearance of a corksrew-

like motion of the jet which became more pronounced with

increasing frequency , making more readily observable the

helical mode , which dominates the breakdown mechanism

These results are shown in Figs. 31 through 36.

B. CONCLUSIONS.

From the results , discussed above , we may draw the

following conclusions concerning the effect of small pertur-

bations on jet breakdown:

a. In the case of laminar flow, (Re=1640) , the breakdown
point moves upstream as the frequency is increased up
to 266 Hz. Downstream of the breakdown point the jet
flow becomes turbulent and breaks into discrete dro-
plets. Above 266 Hz this effect is observed to reverse
itself and the jet returns to its laminar nature.

b. In the case of transitional flow , (Re=2200) , the
breakdown point moves initially upstream as frequency
is increased to 1O Hz . In the range of 100 Hz to
266 Hz an almost stable behavior of the breakdown
point is observed . Singular behavior with very inte-
resting results including a sudden shift of breakdown
point is observed at 300 Hz . Finally a more effective
relaminarization than observed at lower Reynolds num-
ber occurs above 300 Hz leading to a completely stabi-
lized laminar flow at frequencies above 380 Hz .

c. In the case of turbulent flow , (Re=2640) , no notice-
able effect is observed up to a frequency of 100 Hz.
Above this frequency the breakdown point begins to
move gradually downstream up to 250 Hz , returns back
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upstream to a frequency of 333 Hz , and becomes almost
completely unaffected by the pressure perturbations
at higher frequencies.

d. Changing the waveform of the disturbance produced
only a slight deviation in the average breakdown
point, however a markedly different patern of droplet
formation was observed.

e. Although it was not possible to record the phenomena
photographically for inclusion here , it was possible
using the phase angle control incorporated in the
stroboscope to observe the entire development of the
droplet formation visually. This process was found to
be a complex sequence of breakup and re-agglomeration.
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Figure 31. Photos Illustrating Jet Breakdown and oscilloscope
Trace of Pressure at Re=264@ and f=50 Hz
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Figure 32. Photos Illustrating Jet Breakdown and oscilloscope
Trace of Pressure at Re=264O and f=100 Hz
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Figure 33. Photos Illustrating Jet Breakdown and Oscilloscope
Trace of Pressure at Re=2640 and f=200 Hz
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Figure 34. Photos Illustrating Jet Breakdown and Oscilloscope
Trace of Pressure at Re=2640 and f=250 Hz
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Figure 35. Photos Illustrating Jet Breakdown and Oscilloscope
Trace of Pressure at Re=2640 and f=300 Hz

81



Figure 36. Photos Illustrating Jet Breakdown and Oscilloscope
Trace of Pressure at Re=2640 and f=600 Ha
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APPENDIX. CALCULATIONS AND DATA REDUCTION

A. CALCULATION OF CRITICAL REYNOLDS NUMBER

A visual observation of the flow was used in order to

determine the critical Reynolds number . Adjusting the flow

by the means of the needle valve , installed at the entrance

of the plenum chamber , a laminar jet was observed up to the

flow meter indication m. = 25 . Above this value a turbulentI

flow resulted.

Using the equation of continuity:

h= pAU or U = d / pA (Eq. A-i)

where:

ih = the fluid mass rate.

U = the mean flow velocity.

p = 62.34 lbm /ft3 , the water density (at 600 F).

A = the cross section area of the pipe.

Also:

A = -rrd 2  / 4 = (-r/ 4)[(3 / 16)(1 / 12)]2 (ft2 )

or: A = 1.9175 .10
- 4 (ft )

and:

ih = [.6(25/100)J(gal/min) or Ii = .15 gal/min

or: m = (.15)(500.8)(1/3600) (Ibm/sec)

or: I = .020867 (Ibm/see)

Substituting the above values into Eq. A-1 we get:
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.020867
U = , , (ft/see)(62.34)(1.9175 10-4

or: U = 1.74562 (ft/see)

The Reynolds number is given by:

Re = (pUd) / (pge) (Eq. A-2)

where:

p = 2.4 .10
-  (lbf-sec/ft )

and:

gc = 32.2 (Ibm-ft)/(lbf-sec )

Substituting the above values into (Eq. A-2) we get:

(62.34)(1.74562)(1/64)(Re) r = _ _ _ _ _ _ _ _ _ _
(2.4 10 5)(32.2)

or: (Re) er = 2200

The value obtained may be considered reasonable taking

into account that is the most common value found in the Hy-

drodynamics Bibliography. The numerical values used in

the above calculations were obtained from Ref. 25 .

B. CALCULATION OF INDICATED PRESSURE IN LAMINAR FLOW

Refering to Fig. B-i, where the exact dimensions used

are indicated, we apply the Energy Equation:

2 2

P1  U1 2_ g P'2 U2 2 g

+ b c +b 2  +Z 2 + (Eq. B-i)
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DETAIL A

a - Va

36 d1: 0.19"5

d 4O. 2

DETAIL A

Figure B-1. Sketch of the Apparatus,

where:

P1 : the pressure at point 1.

P2 : the pressure at point 2 ( P2 = Patm = 14.7 psia)

U 1 : the mean velocity of the fluid at point 1.

U2 : the mean velocity of the fluid at point 2.

b= b= 2 : the energy correction factor for laminar

flow at points I and 2 respectively.

Z1,z 2 : the height difference from the reference plane

h: the flow losses given by the relation:

I U2

h f -- (Eq. B-2)
d 2g c
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where:

f = 64/Re : friction factor for laminar flow.

1 : the total pipe length.

Inserting the numerical values and the appropriate di-

mensions from Fig. B-1 into Eq. B-2 we get:

hI = (64/2200)(94.416/.1875)[(1.74562)2/2(32.2))

or: h = .69335 (lbf-ftll/b)

Using the Continuity Equation refering to Detail A of

Fig. B-1 and neglecting the minor turning losses we get:

ii= pAU1 = pAU2  (Eq. B-3)
S2

or: U2 /UI = A1 /A2 = d1 2/d2  = (.25), (.1875)2 =1.7777

Therefore:

U = U /1.7777 = 1.74562/1.7777 (ft/sec)

or: U1 = .982 (ftlsec)

From the'Energy Equation, (Eq. B-I) we may write:

ge (P= b 2U12) + g(z.-z + ghl
1 -P2) - (U2

2U 1 )p 2

Solving for AP = P1 -P2 we get:

.p b
AP -- [- (U2 _U 2) + g(z + ghl]

2 2 2 -zl) (Eq. B-4)

Substituting numerical values into Eq. B-4 we get:

P =6234 2- [(1.74562)2( .982)2]+32.21-+32.2(.69335))
32.20" 2 """ 1

or: AP = 125.18 (lbf/ft2 )
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or: AP = .8693 (psig)

or: AP = 1.775 (in.ig) at 600 F

The latter is a reasonable result compared with the

mercury manometer which indicated pressure Pind 1.8 in.Hg

suggesting an error of 1.39 % .

The curvature of the pipe does not create a large effect

in friction factor for this Reynolds number which is in

good agreement with the experimental work of White [Ref.26].

C. DYNAMIC RESPONSE OF INDICATED PRESSURE

Since the pressure perturbations were introduced in

the upstream plenum chamber and measured with a pressure

transducer through a pressure tap, we may reasonably inquire

into the accuracy of the pressure traces measured. In order

to answer this question, we consider the dynamic response of

the system under the assumption that the fluid pressure is

applied uniformly at the transducer front surface

The transient response of a pressure measuring instru-

ment is dependent on two factors:

a. The response of the transducer element that senses

ses the applied pressure.

b. The response of the pressure transmitting fluid

contained in the connecting tubing.
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This latter factor is frequently the one which deter-

mines the overall frequency response of a pressure measure-

ment system , and eventually calibration must be relied upon

for determining this response.

An estimate of this behavior may be obtained from the

following analysis (Ref. 27].

Consider the system shown in Fig. C-1. The fluctuating

pressure has a frequency, , and an amplitude, Po, and is

impressed on a tube of length L, and radius r. At the end of

this tube is a chamber of volume V, where connection with

the pressure transducer is made . We seek an expression for

the pressure indicated by the transducer, P0

V P

PRESSURE TRANSDUCERL<'

Figure C-1. Schematic Diagram of Pressure

Transducer Connection.

The mass of the fluid oscillates under the influence

of fluid friction in the tube which tends to dampen the mo-

tion. If the conventional formula for laminar friction resi-

stance in tube flow is used to represent this friction , the

resulting expression for the pressure amplitude ratio is:
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= )2 + 4h2(J)2}1/2 (Eq. C-1)

where:

Wn is the natural frequency given by the expression:

3 Trr 2 c2"

= n L= (Eq. C-2)4LV

and h is the damping ratio given by the expression:

h = 2pg c  3LV (Eq. C-3)
per 3  IT

In the above relations, Eqs. C-2 and C-3 :

a = the velocity of sound in the fluid.

p = the dynamic viscosity of the fluid.

p = the fluid density.

The phase angle for the pressure signal is given by:

= tan - 1 - 2 (Eq. C-4)
1- C~)

Introducing the physical dimensions of the present appa-

ratus, refering to Fig. C-1 we have:

L = 3.5 in L = 0.5 in

r = 0.25 in r' = 0.25 in

V =rrr 2L = Tr(.25/12) 2 (3.5/12) = 6.8177 10- 5 (ft 3)

C= (K/p)
1/ 2

or: c = [144 (311 .103)/1.938]1 /2 = 4800 (ft/see)

3p = 62.34 lbm/ft

= 2.4 .10-5 lbf-sec/ft 3  (at 60°F
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Substituting the above values into Eq. C-2 we get:

3Tr(.25/12)2(4800)2

W n 4(3.5/12)(6.8177 10- 4 )

or: n = 10885 see-1

Substituting into Eq. C-3 we get:

h= 2(2.4 105)(32.2) 
3(3.5/12)(6.8177 10

- 4 )

(62.34)(4800)(.25/12) r

or: h = 7.87 10
- 6

From these results we see that the difference between

pressure transducer indication and actual plenum chamber

pressure is negligible for the working frequency range.

For example at W = 1000 Hz , from Eq. C-1 we get:

p 1_ j 10001 21 2 10001 2-1/2
='j~i - -+ 4(7.87 10-6)2 2

P 010885J 110885

or: P/P = 1.0085

Therefore the pressure indication error due to dynamic

response is 0.85 %

We can get for the phase angle of the pressure signal,

from Eq. C-4 :

tan - 1 -[2(7.87 10-6)(.09187) / (1 - .09187)]

or: : = -8.355 10- 5  rad
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D. CALIBRATION DIAGRAMS

In order to compare theoretical and experimental re-

sults concerning the indicated pressure from the mercury ma-

nometer, as well as the pressure variations from the digital

multimeter, it was necessary to calibrate both of them.

A pressure calibration diagram is plotted in Fig. D-1 where

it is shown to be linear.

Since the Reynolds number is a function of flow rate, it

was easier to adjust the flow more accurately with the aid

of a pressure indicating digital multimeter than the rotame-

ter. Therefore two diagrams were created, shown in Figs.D-2

and D-3 where are plotted the indicated flow rate versus the

indicated pressure , expressed in inches Hg and D.C Volts

respectively.
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P(IN.HG) VS P(D.C VOLT)
R
o 

-

3./

r.

0

I

ol

9O?0 , .0 10.0 11.0 11.0
PRESURE INDICATED (D.C VOLT)

Figure D-1. Pressure Calibration Diagram
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FLOW RATE VS P(IN.HG)
0

ZO,

- - I - -

O0

o .

R

!0

0- -

1.7 I2,7 3.7 4.7 6.? 7 . 7 7 .7 8 .7 10.7 11.7
rrssUR INDICATED ON.HG)

Figure D-2. Flow Rate vs. Pressure Indicated (in.Hg) Diagram
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FLOW RATE VS P(D.C VOLT)

O---
o. - -r v s

4.o

t 3- __ _

a
0 _-_

---

6.0 6.8 6.4 6.6 01.8 7.0 7.8 7.4
PRESSURE INDICATED (D.C VOLT)

Figure D-3. Flow rate vs. Pressure Indicated (VDC) Diagram
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